
W R I T T E N B Y

Will Autonomous
Vehicles Ever Be Safe?

Christopher Giordano
Vice President UX/UI Technology

The DiSTI Corporation

Jim Carroll
Chief Technology Officer

Digica

Will Autonomous Vehicles Ever Be Safe?

UI Functional Safety in Autonomous Vehicles (AVs)

What UI is required in AVs

At first glance, it may appear that autonomous vehicles will not have a significant
requirement for User Interfaces (UI) functional safety. There will be fewer driver controls,
if any, in an autonomous vehicle, implying a diminished UI. Those controls that remain are
likely to be infotainment related and not required to be compliant with functional safety.

However, although traditional driver controls may become less significant, the nature
of autonomous vehicles brings new, additional requirements for vehicle control.
Standardization of AVs will not occur overnight either, telling us that traditional driver-
controlled vehicles and AVs will have to share the road during the transition. During this
transition period, AVs will most certainly still require some level of conventional driver
controls, which will have safety-related considerations. This paper discusses what
those UIs may be and the challenges and potential solutions in developing the software
architecture and creation process to accommodate the need for functional safety.

What UI goes into what part of a design is of some debate
lately and depends on which sub-components the UI
interfaces. For Functional Safety ASIL (Automotive Safety
Integrity Level) rated UI, most of the emphasis is historically
placed on the Instrument Clusters’ critical components.
They intrinsically connect to the integrated vehicle parts
that control the vehicle’s movements, motion, errors, and
behaviors. These systems can create an environment for
‘catastrophic’ failure, resulting in loss of human life.

Varying domains until recently have had very different UI
requirements, especially as it pertains to functional safety.
With the rapid onset of AVs, ASIL-rated UI takes on an
entirely new meaning for those creating the requirements
and the use case in the AVs’ different components.

For example, the infotainment system is historically part of the non-integrated
systems that usually do not pose a safety threat for a vehicle in motion if a failure
occurs. With the convergence of subsystems (one SoC managing multiple displays),
infotainment is starting to play more of a pivotal role in the driving cockpit.

Functional safety requirements are also making their way from the Cluster and
Heads-Up Display (HUD) into a single head unit system that has the power and
capabilities to run multiple displays. While efficient from the hardware point of view,
it presents unique challenges from the software developer’s perspective, which
we discuss in detail in this paper. Hardware and display technology have also both
come to the point where mass-market automobiles can now employ HUDs.
Bringing a new round of UI and software architecture decision making:
What data to display on the windshield if that data should have ASIL ratings
attached to it and what rating? As both Clusters and HUDs start playing more
of a role in the Infotainment system, a functionally safe architecture along with
a company’s proper safety culture becomes of paramount importance to the
success and safety of the brand.

Where the UI is undoubtedly of critical importance in AVs is the concept of
emergency overrides, also known as ‘take over events.’ Imagine your vehicle
in motion on the highway at 120 Kph. Suddenly, an external event brings your
vehicle to a new state where it does not contain the information required to make
a decision. At that point, the vehicle invokes a takeover event, giving the driver
seconds to know all the critical systems’ states to make potentially life-critical
decisions. That information is typically transferred from the vehicle to the driver,
either audibly, visually, or both. Multisensory Integration studies show that a
combination of audible and visual data produces an improved mean reaction
time, hence a more timely cognitive response.1 Thus, in order to improve the
cognitive transfer, clear, concise and reliable UI becomes very important.
There is a long-standing debate on moving directly to full autonomy and skipping
the partial system, thereby removing the need for take over events. The paper
discusses this in further detail after the next section on the different autonomy
levels and what they mean.

Remote vehicle controls are also a strong candidate for ASIL
rated UI, but precisely what the UI should be is not clear or
consistent. There are several ways to think of remote capabilities:

	⁘ Driver external to the vehicle in simple low-speed auto
parking, or summons information, typically from a remote
request key fob or connected mobile smartphone.

	⁘ Driver in the vehicle driving in traffic and automated
take over events such as lane keep assist, emergency
auto-braking, or adaptive cruise control.

As defined in the first case above, remote capabilities are usually
“fire and forget” commands to the vehicle. However, the UI still
needs to be clear, consistent, and reliable. It does control the
movement of the vehicle, which puts some level of ASIL rating
to it, but potentially not on the UI itself.

As defined in the second case above, remote capabilities are
more about minor adjustments in motion having the vehicle
taking over in motion. The driver in this situation may not be
able to or have the time to override these activities, hence,
a safe and reliable architecture here is also critical.

Infotainment

Emergency Override

Remote Control

1 - Rosemann, S., Wefel, I., Elis, V., & Fahle, M. (2017). Audio–visual interaction in visual motion detection: Synchrony versus Asynchrony.
Journal of Optometry, 10(4), 242-251. doi:10.1016/j.optom.2016.12.003

As AV’s capabilities continue to progress, as do the system requirements definitions of any of
these domains listed above, the UI required is still in flux. One thing is sure; Functional Safety
plays an ever-increasing role in the UI and Software architecture as the systems increase in
their complexity. Simultaneously, the traditionally driven vehicles versus AVs continuum gap
narrows. The transition period between no automation to partial automation and eventually,
full automation requires a clear definition.

As mentioned earlier, many believe the ‘rip the band-aid off’
to autonomy is a safer approach and that we should move all
vehicles directly to Level 5. In theory, that may be ideal, but there
are other considerations such as costs, time to market, systems
testing, and the publics’ comfort level with such technologies.

The public’s willingness to adopt AVs is still a mixed reaction.
We are currently in a transition period. We continue to learn
more and implement newer Artificial Intelligence systems to
make life-critical driving decisions based on the mountain
of data acquired. This fact highlights that while not entirely
out of reach, we still have a way to go before reaching Level 5
autonomy comfortably and at least regionally. There are too
many factors involved currently to make a solid leap to Level 5.
The main questions being:

A Long Way from Full Autonomous Vehicles
When it comes to
autonomous driving, there
are five different levels as
defined by the Society of
Automotive Engineers (SAE)2

	» How does the AV interact with Non-AVs still on the road?

	» Should there be some level of human control over the vehicles
systems in motion and if so, what?

	» Who is liable for accidents with a pure AV?

	» Who becomes the centralized authority to define the
standards mandated on OEM development while not
increasing cost to the level when it stifles creativity?

	» Is the technology used fail safe?

	» Is the safety culture at the OEMs and Tier 1s that design and
manufacture the vehicle acceptable?

While there are proven safety, mobility, and economic benefits
to AVs, one requirement is evident as we continue moving closer
to complete Level 5 as a standard. There will remain some level
of human controls or intervention capabilities involved with AVs,
at least in the near term. This issue will likely continue until we
prove the technology, and the public accepts that lack of control
can lead to a significantly safer environment.

2 - Lynberg, M. (2020, June 15). Automated Vehicles for Safety. Retrieved
from https://www.nhtsa.gov/technology-innovation/automated-
vehicles-safety

There is always an underlying corporate need for the UI to look
great and be consistent with the branding. Some may argue that
the UI's look & feel is the primary differentiation from one brand
to another. As such, there is always the implicit understanding
that one of the primary requirements is that the interface 'look
good,' which has subjectively different connotations to different
designers.

For safety purposes, the UI should also be intuitive and simple
to minimize distractions and interaction times. As to the level
of functional safety attached to those UIs, that remains open
to interpretation by the OEM and suppliers. There are NHTSA,
DOT, SAE, and EC guidelines but no hard fast strict FuSa rules to
adhere to as per the specific autonomy level. These guidelines
do change and should become more rigorous as the autonomy

level increases. Pure autonomy will have its own level of what is
important once we get there, however, for the near term during
the transition period, from a safety perspective, what is essential
for UI in autonomous vehicles is three-fold: simple, performant,
and safe.

	⁘ Simplicity to minimize the cognitive load and critical data
transference to the human during the takeover events.

	⁘ Runtime performance to ensure the critical content draws
as expected when it's expected.

	⁘ Functional safety to guarantee the critical components
are visible precisely when intended by the system safety
design strategy.

From a UI perspective, accomplishing all of the above points can
be handled employing proven commercialized software tooling,
and a well-designed software architecture with safety culture in
mind. Hardware and software continue to evolve and become
more efficient, handling more data faster. As such, there will
never be a one size fits all development process for every system.
Rather the flexibility to encompass change and future proof your
technology by allowing for fast and efficient adaptation becomes
the cornerstone to any OEM and Tier 1 supplier's success.

For example, the recent trend toward a single system
governing multiple displays was not easily possible ten years
ago. As hardware became smaller, faster, and used less power
but could still push massive amounts of data across the bus,
the idea of having one more capable SoC governing multiple
displays instead of each display having its own SoC became
obtainable and financially viable. This change in hardware
architecture facilitated the need for a shift in software
architecture to blend systems that traditionally did not handle
ASIL (IVI) with those that do (Cluster & HUD). This unified system
posed a unique set of challenges in the software architecture
from the developer's perspective. This challenge is mitigated by
using highly flexible, commercially available tools that can adapt
while not putting the underlying architecture at risk for fault.

What is Important for UI in AVs

Driving into the Future

Semiconductor vendors have recognized the importance of
providing FuSa compliant tooling to gain a competitive edge in
the automotive sector. Arm offers a compiler feature package
to provide safety-critical support; as Arm provides the Silicon IP
for the processors included in many SoCs, this means that the
semiconductor companies can adopt this support with minimal
additional effort. The knock-on effect is that other SoC and
Silicon IP vendors must provide support to remain competitive in
this sector.

Leveraging the experience of tools employed in other similar
domains is a very risk-free and low-cost approach to foster
innovation. The GL Studio UI Toolkit, for example, has a pedigree
of over 20 years and is currently flying in Aircraft, Spacecraft, and
Helicopters, and used in Life Critical Medical devices around the
world. GL Studio was also the first UI tool to certify to the ISO

26262 ASIL D standard in April of 2015. They have also passed
the NQA-1 pre-certification for nuclear facilities, an even more
rigorous process than the FAA's DO-178C DAL A certification for
avionics.4 The cost of development in these tools is handled by
a wide array of markets and customers in different industries
that have had the same considerations and needs for over 30
years, as automotive has had for the last decade. Thus leveraging
the experience and existing tools for tangential markets such
as Aviation that produce significantly higher quality via more
rigorous testing and better performance becomes a low risk and
low-cost solution.

All of this together yields a significantly more reliable software
architecture in an age when ADAS systems and autopilot are on
the horizon. What does UI have to do with this? Take over events
or emergency override discussed earlier in this paper.

There is a perception that tools designed for functional safety are more expensive than those
that are not. This tangential market tool-adoption approach also leverages sunken non-recurring
engineering costs keeping automotive OEM efforts costs down for software certification.

As published in "Aviation Week & Space Technology," November 2017, Rockwell Collins,

Rockwell Collins' answer is a risk-based system, one of the aspects of automotive industry
standards. The message is clear for avionics and automotive – there is much money spent on
safety. How can OEMs reduce costs, while at the same time maintaining safety standards and not
stifling creativity? Employ the use of the proper commercial tools that have already borne
the brunt of the cost and been proven in tangential related markets for functional safety.

Commercial Tooling

"It used to be that for a new

avionics system, 75 cents

of each dollar was spent on

engineering and 25 cents

on certification by global

agencies. Today, that ratio

has changed significantly." 3

Automotive software certification has challenged
automotive OEMs over the last decade. While certification
efforts can improve automotive safety standards, the
concern is that it can also stifle innovation and creativity
and raise development costs.

In a time when automotive OEMs are looking to compress
their development timeline, certification efforts have
the perception of encouraging bureaucracy, thereby,
conversely extending development timelines.

3 - Statler, K. L. (2017, November 13). The World Needs Seamless Aviation Certification Standards. Aviation Week & Space Technology.
4 - HMI and UI Design Software: Embedded Target Systems. (2019, June 12). Retrieved August 28, 2020, from https://glstudio.disti.com/
 features/safetycritical/

Embedded Software

Safety-Critical compliant tools and software components
are maturing rapidly; in the medium term, hypervisors may
become less important as such, software products simplify
the construction of fully Safety-Critical compliant systems.
This method will reduce time to market and development and
software licensing costs. In some cases, SC variants of tools
incur the same price as their non-SC equivalents - in these cases,
using a fully SC compliant may simplify the software architecture
with the added benefit of full SC compliance at no additional
cost.

In the context of vehicle UIs, application software is primarily
the user interface through which vehicle occupants interact
with the vehicle. This context includes driver functions such
as the cluster, environmental controls, and infotainment. Such
applications can be built to be functionally safe by using safety-
critical APIs and functional safety UI tooling such as GL Studio.

The selection of appropriate functional safety software
components is crucial in a project's design phase before any
code is programmed. Changing base technology selections
during the development cycle will result in significant technical
debt, additional integration work, and may compromise the
resultant software's functional safety.

Support for UI Functional Safety in software is in two key
domains: the platforms, which enable creating safety-critical
applications, and the applications with which users interact.

Platform software comprises many components, including
device drivers and other BSP components that directly control
the underlying hardware components, such as GPUs, middleware
implementing protocols and codecs, and abstraction layers
providing consistent APIs to the application layers. Organizations
such as Khronos specify industry-standard APIs to be used by
application developers, such as OpenGL, OpenGL ES, and Vulkan.
Safety-Critical (SC) variants of these APIs are available already
with newer variations under development. SC compliant versions
of the drivers have also been made available by the GPU vendors
to support these APIs.

Where hardware resources are shared between vehicle functions,
software virtualization is commonly deployed to achieve
separation between functions. In such an environment, the host
and guest drivers, and the hypervisor must also be functional
safety compliant.

There are also capabilities for hardware virtualization and GPU
separation on the same chip. While this is a related issue, which
could influence the architecture used, hardware virtualization is
outside the software architecture scope of this paper.

As the architecture in the figure to the left shows, software
virtualized environments can be complex. This approach
complicates the process of defect resolution before production,
lengthening the overall development cycle.

The key to functional safety is the assessment of risk. Strict
processes are imposed during vehicles' development to ensure
that the end vehicle users' risk is minimized. A risk classification
scheme, known as ASIL (Automotive Safety Integrity Level), is
frequently used to assess such risks. There are four risk levels,
named ASIL A (lowest) to ASIL D (highest). Hazards assessed as
ASIL D represent life-threatening risks, and such developments
are subject to the strictest development processes.

In general, the principle to apply when working with ASIL is to
work with the highest level that does not incur an additional

cost, while complying with industry standards and regulatory
frameworks. Such an approach improves product reliability;
it will also allow for flexibility in the event of the requirements
change. Given the costs of developing software in safety-critical
environments, extending its lifetime and reducing long-term
costs is critical.

ASIL is a subset of the broader standard, ISO26262, which also
provides guidance for product development processes in the
automotive industry. Compliance with such measures in the
development of vehicle UIs guarantees functional safety.

Automotive Safety Integrity Level (ASIL)

The process is designed to ensure that risks identified under
ASIL are documented, with solutions designed, implemented,
and tested appropriately. A “V-model” process is described by
the standard, which emphasizes several key features:

	⁘ Engineering process, including traceability by documented
requirements, design and implementation.

	⁘ Structured verification of the outputs of each phase of the
development, by peer processes in the test cycle.

	⁘ Specific focus on the safety requirements of the system,
addressing ASIL identified risks.

The V-model (and variations of it) is well understood and is
commonly deployed in embedded software development
projects. Its usage applies equally to creating all automotive
application stack components, including infotainment and
driver applications, UI libraries, and graphics drivers.

All UI software components must be developed according
to these standards to be SC compliant.

GPU

Modern UIs are incredibly complex, and pervade every corner
of a modern operating system, in every deployed context. The
UI experience is at the forefront of the user experience from the
moment that the user steps into the vehicle, from the OEM's
splash screen through the menu system to the navigation
application. Because of the complexity and prominence of the
user experience, performance is crucial. All modern UIs are built
on hardware that includes a GPU so that graphical functions can
be offloaded from the application processor.

The GPU's complexity is such that SoC companies often license
GPU designs from third parties to include in their devices.
Imagination Technologies and Arm are the leading vendors
of "licensable" GPU designs. Other SoC companies design
their GPUs that are well integrated with their application
processors; this approach is taken by companies such as
Nvidia, Qualcomm, and Intel.

The industry has formed bodies such as Khronos to define
standard APIs for graphics programming to simplify software
integration. OpenGL was first specified for desktop PCs almost
three decades ago. It has been through many revisions as the
underlying hardware has evolved and has spawned several
related APIs such as OpenGL ES, for use in embedded contexts.

Safety-Critical variants of both APIs are available, as are GPU
vendor drivers from companies such as CoreAVI. Microsoft
specifies a competitor API, Direct3D. Although Windows is
commonly used in infotainment systems, most such systems
are Linux-based and use Khronos APIs. Apple also defines
a competitor API, Metal. Currently, there is no safety-critical
variant of Direct3D or Metal; Metal has yet to be deployed in a
commercial, automotive system.

As GPUs are also used for more generic computation, Khronos
also specifies a compute API, OpenCL. They have developed an
alternative to their set of APIs, called Vulkan. This method unifies
graphics, embedded, and compute APIs. Vulkan may replace its
older "siblings" in due course, but this is by no means a certainty
- the programming model is significantly more complicated than
its predecessors. To unify graphics and compute in a single
API, much of the logic previously encapsulated in the GPU driver
must now be implemented by the application developer or the
vendor of UI tools and libraries. Although this allows for greater
feature differentiation for tool vendors, it introduces significant
additional hardware-related complexity into components that
have hitherto been abstracted from the hardware dependencies.
In 2019, Khronos started work on a safety-critical variant
of the Vulkan API.

Vehicle OEMs are continually striving for a reduced bill of
materials cost in the vehicle. This approach may mean removing
some SoCs, which implies the sharing of physical processors
between vehicle functions. As discussed earlier in the paper,
there are GPU virtualization capabilities as well, which would
be related to this feature. Where safety-critical and non-safety
critical functions coexist on a single processor, it is technically
simpler to use a single safety-critical UI software stack across all
functions hosted on that processor.

Historically, in-car systems have been based on standard SoC
SKUs. SoCs are highly complex devices, which are therefore
comparatively expensive. For specific applications, it may be
possible to establish a system on lower-cost silicon, such as
FPGAs or MCUs, while still achieving the critical requirements
of high-quality user interface and SC compliance. Several ISVs
provide software renderers; this removes the need for a GPU
and the complexities of sharing it between operating systems.
A GPU is by far the largest processor included in an SoC, so

removing it also results in a smaller system footprint. At the
time of introducing APIs such as OpenGL ES, software renderers
did not perform well enough for inclusion in an automotive SC
environment. Today, their performance is much improved. The
possibilities of FPGAs, including GPUs, adds an extra dimension
to the architectural decisions.

MCUs are typically used for "smaller" applications, which
frequently do not include a user interface. They are already
heavily used in an automotive context, as the basis for ECUs for
SC components such as braking systems. Like FPGAs, MCUs
have also increased in processing power to the point where
software renderers perform well enough to be used in a broader
range of in-car applications. MCUs have much lower power
requirements than SoCs or FPGAs; this may also reduce cost.

Cost savings may be possible through hardware selection, but it
is vital to consider the impact on related costs such as software
licensing and development.

Other Considerations

As we continue moving closer to the adoption of full Level 5
Autonomous Vehicles, it is evident this must be accomplished
safely. For the many reasons defined in this paper, the AV
continuum is slowly narrowing in on the path forward. While
it is clear that while we continue to strive towards it, full Level
5 automation is not in our immediate future. There are too
many factors involved in one swift and sweeping move direct
to Level 5. While there are many benefits to be had from pure

Conclusion
autonomy, the automotive industry must overcome infrastructure
issues, socio-economic problems, human emotions, and, most
importantly, to this paper, technological challenges.

While we need to continue progress, this paper mostly covers
the need to do so in a safe and economically viable manner.
As mentioned in a well-known study on Model-Based Design,
“80% of development costs are spent identifying and correcting
defects during the integration phase" of a software project.5

5 - Lundblad, M. & Cohen, M. (march 2009). Software Quality Optimization: Balancing business transformation and risk. IBM Software Group

While not a typically well-accepted principle due to initial costs,
the key is to invest in the right hardware and software architecture
and workflow upfront. Ultimately, the flexibility required to
future proof your software design and accommodating new
technologies and architectures comes at a cost upfront. Given the
above study, this does save significant effort and thereby costs
over the life of your project if properly implemented up front.

The primary goal in developing your embedded graphical software
should be safety. Beyond that, the costs and look
and feel can be balanced with the appropriate upfront architecture
design while leveraging the existing COTS tools
that already support safe software that will not stifle creativity
or exceed the budget.

Since 1997, Chris has focused on developing UI and
HMI Software starting at the U.S. Navy and University of
Central Florida. Chris has worked at DiSTI since 1999 as
lead engineer or program manager for over 60 different
programs, and eventually the product manager for all
DiSTI’s UI development tools. Chris managed DiSTI’s HMI/
UI programs for Boeing, Hyundai, Jaguar Land Rover,
Lockheed, NASA, Nissan Motors, Northrop Grumman and
The Space Ship Company to name a few and is currently
DiSTI’s VP of UX/UI Technology. He has successfully
managed DiSTI's UX/UI business for over a decade
developing a global leadership position as experts in HMI/
UI and Functional Safety. Chris holds bachelor degrees in
Finance from UNCW and Computer Engineering from UCF
graduating with honors.

Jim Carroll is a highly experienced technical director with a
background in embedded systems. Over 25 years, Jim has
designed and built large-scale software solutions reaching
millions of users working as a software engineer, technical
architect and CTO. The majority of Jim’s work has been in
the semiconductor sector, working with companies including
Intel, Arm and Imagination Technologies. He has also been a
contributor to the software standards group, Khronos.

About the Authors

Christopher Giordano
Vice President UX/UI Technology
The DiSTI Corporation

Jim Carroll
Chief Technology Officer
Digica

